Disrupting polyamine homeostasis as a therapeutic strategy for neuroblastoma.

نویسندگان

  • Nicholas F Evageliou
  • Michael D Hogarty
چکیده

MYC genes are deregulated in a plurality of human cancers. Through direct and indirect mechanisms, the MYC network regulates the expression of > 15% of the human genome, including both protein-coding and noncoding RNAs. This complexity has complicated efforts to define the principal pathways mediating MYC's oncogenic activity. MYC plays a central role in providing for the bioenergetic and biomass needs of proliferating cells, and polyamines are essential cell constituents supporting many of these functions. The rate-limiting enzyme in polyamine biosynthesis, ODC, is a bona fide MYC target, as are other regulatory enzymes in this pathway. A wealth of data link enhanced polyamine biosynthesis to cancer progression, and polyamine depletion may limit the malignant transformation of preneoplastic lesions. Studies with transgenic cancer models also support the finding that the effect of MYC on tumor initiation and progression can be attenuated through the repression of polyamine production. High-risk neuroblastomas (an often lethal embryonal tumor in which MYC activation is paramount) deregulate numerous polyamine enzymes to promote the expansion of intracellular polyamine pools. Selective inhibition of key enzymes in this pathway, e.g., using DFMO and/or SAM486, reduces tumorigenesis and synergizes with chemotherapy to regress tumors in preclinical models. Here, we review the potential clinical application of these and additional polyamine depletion agents to neuroblastoma and other advanced cancers in which MYC is operative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Pathways Disrupting Polyamine Homeostasis as a Therapeutic Strategy for Neuroblastoma

MYC genes are deregulated in a plurality of human cancers. Through direct and indirect mechanisms, the MYC network regulates the expression of > 15% of the human genome, including both protein-coding and noncoding RNAs. This complexity has complicated efforts to define the principal pathways mediating MYC's oncogenic activity. MYC plays a central role in providing for the bioenergetic and bioma...

متن کامل

Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma

Polyamines are highly regulated essential cations that are elevated in rapidly proliferating tissues, including diverse cancers. Expression analyses in neuroblastomas suggest that up-regulation of polyamine pro-synthetic enzymes and down-regulation of catabolic enzymes is associated with poor prognosis. Polyamine sufficiency may be required for MYCN oncogenicity in MYCN amplified neuroblastoma,...

متن کامل

ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma.

Neuroblastoma is a frequently lethal childhood tumor in which MYC gene deregulation, commonly as MYCN amplification, portends poor outcome. Identifying the requisite biopathways downstream of MYC may provide therapeutic opportunities. We used transcriptome analyses to show that MYCN-amplified neuroblastomas have coordinately deregulated myriad polyamine enzymes (including ODC1, SRM, SMS, AMD1, ...

متن کامل

Inhibition of S-adenosylmethionine decarboxylase by inhibitor SAM486A connects polyamine metabolism with p53-Mdm2-Akt/protein kinase B regulation and apoptosis in neuroblastoma.

S-adenosylmethionine decarboxylase (AdoMetDC) is an essential enzyme of polyamine (PA) biosynthesis, and both AdoMetDC and PA levels are often up-regulated in cancer cells. The second-generation inhibitor SAM486A inhibits AdoMetDC enzyme activity and has been evaluated in phase II clinical cancer trials. However, little is known about the mechanism of action and potential use of this therapeuti...

متن کامل

Alpha-Difluoromethylornithine, an Irreversible Inhibitor of Polyamine Biosynthesis, as a Therapeutic Strategy against Hyperproliferative and Infectious Diseases

The fluorinated ornithine analog α-difluoromethylornithine (DFMO, eflornithine, ornidyl) is an irreversible suicide inhibitor of ornithine decarboxylase (ODC), the first and rate-limiting enzyme of polyamine biosynthesis. The ubiquitous and essential polyamines have many functions, but are primarily important for rapidly proliferating cells. Thus, ODC is potentially a drug target for any diseas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 15 19  شماره 

صفحات  -

تاریخ انتشار 2009